REPORT

Boston Alternative Energy Facility – Preliminary Environmental Information Report

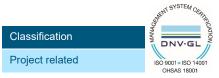
Appendix 14.1 Construction Phase Dust and Particulate Matter Assessment Methodology

Client: Alternative Use Boston Projects Ltd

Reference:PB6934-RHD-ZZ-XX-RP-Z-0001Status:Final/01Date:17 June 2019

HASKONINGDHV UK LTD.

Rightwell House Rightwell East Bretton Peterborough PE3 8DW Industry & Buildings VAT registration number: 792428892


+44 1733 334455 **T**

+44 1733 262243 **F**

email E

royalhaskoningdhv.com W

Document title:	Appendix 14.1: Construction Phase Dust and Particulate Methodology	Matter Assessment
Document short title:	PEIR Chapter 14 Air Quality Appendix 14.1	
Reference:	PB6934-RHD-ZZ-XX-RP-Z-0001	
Status:	01/Final	
	17 June 2019	
•	Boston Alternative Energy Facility	
Project number:		
Author(s):	Isabel O'Mahoney, Joe Parsons, Charlotte Goodman	
Drafted by:	Isabel O'Mahoney, Joe Parsons, Charlotte Goodman	
Checked by:	John Drabble	
Date / initials:	JD 12/06/2019	
Date / Initiale.		
Approved by:	Carly Bower	
Approved by.	Gary Bower	
Date / initials:	GB 17.06.2019	

Disclaimer

No part of these specifications/printed matter may be reproduced and/or published by print, photocopy, microfilm or by any other means, without the prior written permission of HaskoningDHV UK Ltd.; nor may they be used, without such permission, for any purposes other than that for which they were produced. HaskoningDHV UK Ltd. accepts no responsibility or liability for these specifications/printed matter to any party other than the persons by whom it was commissioned and as concluded under that Appointment. The integrated QHSE management system of HaskoningDHV UK Ltd. has been certified in accordance with ISO 9001:2015, ISO 14001:2015 and OHSAS 18001:2007.

ii

Table of Contents

A14.1	Introduction	1
A14.2	Step 1: Screening the Need for a Detailed Assessment	1
A14.3	Step 2: Assess the Risk of Dust Impacts	1
A14.4	Step 2A: Define the Potential Dust Emission Magnitude	2
A14.5	Step 2B: Define the Sensitivity of the Area	2
A14.6	Step 2C: Define the Risk of Impacts	4
A14.7	Step 3: Site-Specific Mitigation	5
A14.8	Step 4: Determine Significant Effects	5
A14.9	References	6

Table of Tables

Table A14.1 1 Criteria Used in the Determination of Dust Emission Class	2
Table A14.1 2 Criteria for Determining Sensitivity of Receptors	3
Table A14.1 3 Sensitivity of the Area to Dust Soiling Effects on People and Property.	3
Table A14.1 4 Sensitivity of the Area to Human Health Impacts	3
Table A14.1 5 Risk of Dust Impacts- Earthworks	4
Table A14.1 6 Risk of Dust Impacts- Construction	5
Table A14.1 7 Risk of Dust Impacts- Trackout	5

Appendix 14.1: Construction Phase Dust and Fine Particulate Matter Assessment Methodology

A14.1 Introduction

A14.1.1 The following section outlines criteria developed by the Institute of Air Quality Management (IAQM, 2016) for the assessment of air quality impacts arising from construction activities. The assessment procedure is divided into five steps and is summarised below.

A14.2 Step 1: Screening the Need for a Detailed Assessment

- A14.2.1 An assessment will normally be required where there are human receptors within 350 m of the site boundary and/or within 50 m of the route(s) used by construction vehicles on the public highway, up to 500 m from the site entrance(s). Designated ecological sites within 50 m of the site boundary or within 50 m of the route(s) used by construction vehicles on the public highway, up to 500 m from the site entrance(s), are also identified at this stage. A designated ecological site refers to any sensitive habitat affected by dust soiling. For locations with a statutory designation, such as a Site of Specific Scientific Interest (SSSI), Special Area of Conservation (SAC) and Special Protection Area (SPA), consideration should be given as to whether the particular site is sensitive to dust. Some non-statutory sites may also be considered if appropriate.
- A14.2.2 Where the need for a more detailed assessment is screened out, it can be concluded that the level of risk is 'negligible'.
- A14.2.3 There were several human receptors within 350 m of the site boundary; a Detailed Assessment was therefore required. As there were no designated ecological sites within 50 m of the site boundary, the impact of dust on ecological sites was not assessed.

A14.3 Step 2: Assess the Risk of Dust Impacts

A14.3.1 A site is allocated to a risk category based on the scale and nature of the works (Step 2A) and the sensitivity of the area to dust impacts (Step 2B). These two factors are combined in Step 2C to determine the risk of dust impacts before the implementation of mitigation measures. The assigned risk categories may be

different for each of the construction activities outlined by the IAQM (demolition, construction, earthworks and trackout).

A14.4 Step 2A: Define the Potential Dust Emission Magnitude

A14.4.1 The IAQM guidance (IAQM, 2016) recommends that the dust emission magnitude is determined for demolition, earthworks, construction and trackout. There was not anticipated to be any demolition during the construction works of the Facility, therefore, demolition is not discussed further. The dust emission magnitude is based on the scale of the anticipated works. **Table A14.1.1** describes the potential dust emission class criteria for each outlined construction activity.

Activity	Criteria used to Determine Dust Emission Class				
Activity	Small	Medium	Large		
Earthworks	Total site area <2,500 m ² ; <5 heavy moving earth vehicles active at any one time.	Total site area 2,500 – 10,000 m ² ; 5 – 10 heavy moving earth moving vehicles active at any one time.	Total site area >10,000 m ² , >10 heavy earth moving vehicles active at any one time.		
Construction	Total building volume <25,000 m ³ ; Construction material with low potential for dust release.	Total building volume 25,000 – 100,000 m ³ ; Potentially dusty construction material (e.g. concrete).	Total building volume >100,000 m ³ ; On site concrete batching.		
Trackout	<10 outward HGV trips in any one day; Unpaved road length <50 m.	10 – 50 outward HGV trips in any one day. Unpaved road length 50 – 100 m.	 >50 outward HGV trips in any one day; Unpaved road length >100 m. 		

A14.5 Step 2B: Define the Sensitivity of the Area

A14.5.1 The sensitivity of the area considers the following factors:

- the specific sensitivities of receptors in the area;
- the proximity and number of receptors;
- the local background PM₁₀ concentration; and
- site-specific factors, such as the presence of natural shelters, such as trees, to reduce the risk of windblown dust.

A14.5.2 **Table A14.1.2** outlines the criteria used for determining the sensitivity of receptors.

Table A14.1 2 Criteria for Determining Sensitivity of Receptors

Sensitivity	Criteria for Determining Sensitivity			
of Receptor	Dust Soiling Effects	Health Effects of PM ₁₀		
High	Dwellings, museums and other culturally important collections, medium and long-term car parks and car showrooms	Residential properties, hospitals, schools and residential care homes		
Medium	Parks, places of work	Office and shop workers not occupationally exposed to PM ₁₀		
Low	Playing fields, farmland, footpaths, short- term car parks and roads	Public footpaths, playing fields, parks and shopping streets		

A14.5.3 The criteria detailed in Tables A14.1.3 and A14.1.4 were used to determine the sensitivity of the area to dust soiling effects and human health impacts. Figure 14.2 details the distance bands, as detailed in Tables A14.1.3 and A14.1.4, from the site boundary for use in the construction phase assessment.

Table A14.1 3 Sensitivity of the Area to Dust Soiling Effects on People and Property.

Receptor	Number of	Distance from Source (m)				
Sensitivity	Receptors	<20	<50	<100	<350	
	>100	High	High	Medium	Low	
High	10-100	High	Medium	Low	Low	
	1-10	Medium	Low	Low	Low	
Medium	>1	Medium	Low	Low	Low	
Low	>1	Low	Low	Low	Low	

Table A14.1 4 Sensitivity of the Area to Human Health Impacts

Receptor Sensitivity	Annual Mean PM ₁₀ Concentrati ons	Number of Receptors	Distance from the Source (m)				
			<20	<50	<100	<200	<350
High	>32µg.m ³	>100	High	High	High	Mediu m	Low
		10-100	High	High	Mediu m	Low	Low
		1-10	High	Mediu m	Low	Low	Low
		>100	High	High	Mediu m	Low	Low
		10-100	High	Mediu m	Low	Low	Low

Receptor Sensitivity	Annual Mean	Number of Receptors	Distance from the Source (m)				
	PM ₁₀ Concentrati ons		<20	<50	<100	<200	<350
		1-10	High	Mediu m	Low	Low	Low
		>100	High	Mediu m	Low	Low	Low
	>24-28µg.m ³ <24µg.m ³	10-100	High	Mediu m	Low	Low	Low
		1-10	Medi um	Low	Low	Low	Low
		>100	Medi um	Low	Low	Low	Low
		10-100	Low	Low	Low	Low	Low
		1-10	Low	Low	Low	Low	Low
Medium	-	>10	High	Mediu m	Low	Low	Low
	-	1-10	Medi um	Low	Low	Low	Low
Low	-	>1	Low	Low	Low	Low	Low

A14.6 Step 2C: Define the Risk of Impacts

A14.6.1 The dust emission magnitude and sensitivity of the area are combined and the risk of impacts from each activity (demolition, earthworks, construction and trackout) before mitigation is applied should be determined using the criteria detailed in **Tables A14.1.5** – **A14.1.7**.

Table A14.1 5 Risk of Dust Impacts- Earthworks

Detential Impact	Dust Emission Magnitude				
Potential Impact	Large	Medium	Small		
High	High Risk	Medium Risk	Low Risk		
Medium	Medium Risk	Medium Risk	Low Risk		
Low	Low Risk	Low Risk	Negligible		

Table A14.1 6 Risk of Dust Impacts- Construction

Detential Impact	Dust Emission Magnitude				
Potential Impact	Large	Medium	Small		
High	High Risk	Medium Risk	Low Risk		
Medium	Medium Risk	Medium Risk	Low Risk		
Low	Low Risk	Low Risk	Negligible		

Table A14.1 7 Risk of Dust Impacts- Trackout

Detential Impact	Dust Emission Magnitude				
Potential Impact	Large	Medium	Small		
High	High Risk	Medium Risk	Medium Risk		
Medium	High Risk	Medium Risk	Low Risk		
Low	Medium Risk	Low Risk	Negligible		

A14.7 Step 3: Site-Specific Mitigation

A14.7.1 Step three of the IAQM guidance identifies appropriate site-specific mitigation. These measures are related to whether the site is a low, medium or high-risk site. The highly recommended mitigation measures for the Facility are detailed in **Section 14.8** of **Chapter 14 Air Quality**.

A14.8 Step 4: Determine Significant Effects

A14.8.1 With the implementation of the relevant mitigation measures in **Section 14.8**, the residual impacts from the construction are considered to be **not significant**, in accordance with IAQM guidance.

A14.9 References

Institute of Air Quality Management (IAQM) (2016). Guidance on the Assessment of Dust from Demolition and Construction.